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Abstract—Spiking neural P systems are parallel and distributed 

computation devices which are inspired by the neuro-physiological 

behavior of biological neurons. They are regarded as advanced-

generation models in the realm of neural networks. While biological 

neurons exhibit intricate structures, classical neural-like P systems 

offer simplifications by representing these structures and their 

associated mechanisms as either two-dimensional graphs or 

communication patterns based on tree structures involving firing and 

forgetting. In this research paper, we introduce a novel numerical 

neural-like P system referred to as the Hypergraph-based Numerical 

Neural-like (HNN) P system, which incorporates five distinct types of 

neurons(Elementary, Parent, Hyperparent, Hyperchild, 

Neighbor)aimed at capturing high-order correlations within neuron 

structures. Additionally, we present three innovative communication 

mechanisms(V-rule, E-rule, H-rule) among these neurons designed to 

handle numerical variables and functions. Leveraging this newly 

devised neural-like P system, we have developed a model for 

segmenting tumors in MRI brain images. Our experimental findings 

demonstrate that our proposed models surpass the performance of 

existing state-of-the-art methods when applied to BRATS dataset. Its 

result affirm the effectiveness of the HNN P system in accurately 

segmenting tumors. 
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INTRODUCTION  

Membrane computing models that incorporate the properties 

of spiking neural network encoding for information over time 

and membrane computing processing in parallel are known as 

neural-like P systems. Because neural-like P systems take the 

notion of spiking neurons into account, they may be thought of 

as third-generation neural network models. The building 

blocks of neural-like P systems are always two-dimensional 

graph structures, where the vertices stand in for individual 

neurons and the edges for the appropriate synapses between 

them. These neuron architectures cannot be calculated 

hierarchically and can only communicate with their connected 

siblings. Different cell and neuronal systems, notably P 

systems, have been developed to address this issue. 

Hypergraphs have hyperedges that connect any number of 

vertices and can enable more complex relationships between 

data. Thus, extending membrane structures to a high-

dimensional and more comprehensive nonlinear space using 

hypergraph structures could improve the learning capabilities 

of P systems. 

P systems primarily consist of objects and rules in addition to 

structures. There are only spikes of firing and forgetting rules 

to compute numbers in each neuron of a traditional neural-like 

P system, which also restricts the model's capacity for 

learning. Extensions of neural-like P systems, such as 

nonlinear neural-like P systems, inhibitory neural-like P 

systems, and generalised neural-like P systems, have been 

proposed to overcome this issue. A numerical neural-like P 

system with mathematical functions and numerical variables.  

In that they use synapses to convey signals from one neuron to 

another, neural-like P systems' frameworks resemble CNNs. 

While standard neural networks require 886 sigmoid function-

based processors, neural-like P systems can save more 

computing resources and achieve Turing universality with just 

10 neurons. Digital image segmentation, power supply system 

fault detection, robot control, and other areas have seen some 

effective approaches. However, in comparison to their 

theoretical accomplishments, implementations of P systems 

have advanced slowly due to their limitations on learning 

capacity and framework. A deep learning model was 

integrated into spiking neural-like P systems. In order to 

handle medical imaging data, integrated the automatic 

extraction of feature information from convolution neural 

networks (CNNs) into P systems. Particularly, the discrete 

information processing capability of P systems can convert 

picture pixels and their local information into objects. The 

distributed parallel mechanism used by P system rules to 

implement the automatic information selection of CNNs can 

successfully select distinct features from various images or 
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regions of images at once, further enhancing the effectiveness 

and accuracy of brain tumor segmentation. Current research, 

however, relies on conventional P system topologies and 

protocols, making it unable to fulfil specialised 

transmembrane communication goals like multiple feature 

fusions of MRI brain images. 

In this paper, we introduce a novel approach known as the 

Hypergraph-Based Numerical Neural-Like (HNN) P system, 

which incorporates five distinct types of neurons to capture the 

intricate relationships within neuron structures. Additionally, 

we put forth three innovative communication mechanisms for 

facilitating interactions among neurons, particularly 

concerning numerical variables and functions. This framework 

serves as the foundation for developing a brain tumor 

segmentation model tailored for tumor and organ detection. 

Within this neural-like P system, we have devised specific 

rules within the neurons to execute both down-sampling and 

up-sampling feature selections. To further enhance the 

delineation of boundaries and the characterization of tumor or 

organ content, we conduct feature fusion operations at various 

levels, including up-down, forward-backward, and inter-

neuron interactions, employing rules that apply to these new 

neuron types. 

Furthermore, we explore the possibility of integrating multiple 

segmentation models with varying sets of variables into an 

ensemble learning framework, maximizing the system's 

parallelism to enhance accuracy and efficiency. To evaluate 

the effectiveness of our proposed HNN P system, we employ 

one dataset-the public BRATS dataset for tumor 

segmentation(targeting multiple brain metastases). Our 

experiments showcase that the HNN P system achieves state-

of-the-art performance in segmentation tasks. 

The primary contributions of our work can be summarized as 

follows: 

1. Introduction of a Hypergraph-Based Numerical Neural-

Like P system, harnessing the high-order correlation 

inherent in hypergraphs to enable P systems to perform 

computations and communications across hierarchical, 

planar, and transmembrane levels. 

2. Design and incorporation of five distinct neuron types, 

specifically tailored to capture the intricate high-order 

relationships within neuron structures. We introduce three 

novel communication mechanisms to enable the handling 

of numerical variables and functions, thereby enhancing 

the learning capabilities of HNN P systems and expanding 

their applicability in real-world scenarios. 

3. We have created a MRI brain image tumor segmentation 

model using the HNN P system. This model seamlessly 

combines the exceptional accuracy of deep learning 

functions typically found in semantic segmentation with 

the strong parallelism and resilience inherent in P systems. 

III. PROPOSED SYSTEM 

A. Numerical Neural-like P Systems 

The components that follow is the structure of a numerical 

neural-like P system [11] made up of 𝑀 > 1 neurons: 

𝜏 = 𝜗1 + 𝜗2 + +𝜗𝑛 + 𝑠𝑦𝑛𝑎𝑝𝑠𝑒 + 𝑖𝑛𝑝𝑢𝑡𝑁 +  𝑜𝑢𝑡𝑝𝑢𝑡𝑁    (1)  

 where the dimension of each neuron 𝜗𝑖  (1 ≤ 𝑖 ≤ 𝑀) is 𝜗𝑖 =
𝜌𝑖(0), 𝜌𝑖 , 𝑃𝑖.A collection of spike variables acquired in neuron 

𝜗𝑖, or vector 𝐶1,𝑖, 𝐶2,𝑖 , . . . , 𝐶𝑁𝑖,𝑖
 ∈  ℝ𝑛, is represented as 𝜌𝑖 =

{𝐶𝑛,𝑖  |1 ≤ 𝑛 ≤ 𝑁𝑖}. The collection of starting values in neuron 

𝜗𝑖 is denoted by 𝜌𝑖(0). A collection of production functions 

linked to 𝜗𝑖 are called 𝑃𝑖 . There are two sorts of these modes: 

1) nonthreshold mode, 𝑓𝑡,𝑖(𝐶1,𝑖, 𝐶2,𝑖 , . . . , 𝐶𝑁𝑖,𝑖
), and 2) threshold 

mode, 𝑓𝑡,ⅈ
′ (𝐶1,𝑖, 𝐶2,𝑖 , . . . , 𝑐𝑁𝑖,𝑖

) | 𝑄𝑡 , where 𝑄𝑡 is the threshold. At 

stage 𝑡 ∈ ℕ, 𝑓𝑡,𝑖 compute a value 𝑃(𝑠) = 𝑓𝑡,𝑖(𝑠) and transmits 

𝑃(𝑠) directly to postsynaptic neurons 𝜗𝑗  with (𝑖,𝑗) ∈ 𝑠𝑦𝑛𝑎𝑝𝑠𝑒. 

The collection of synapses, represented by the two-

dimensional graph structure 𝑠𝑦𝑛𝑎𝑝𝑠𝑒 ⊆ {1,2, …,𝑀}, is 

denoted by 𝑠𝑦𝑛𝑎𝑝𝑠𝑒. For every tandem (𝑖,𝑗) ∈ 𝑠𝑦𝑛𝑎𝑝𝑠𝑒, 1 ≤ 

𝑖,𝑗 ≤ 𝑀 and 𝑖 = 𝑗, the input and output neurons are, 

respectively, 𝑖𝑛𝑝𝑢𝑡𝑁, 𝑜𝑢𝑡𝑝𝑢𝑡𝑁 ⊆ {1,2, …, 𝑀}. 

 The configuration of the numerical neural-like P system 𝜏 at 

each step 𝑡 is given by 𝐴𝑡 =<
𝐶1,𝑖(𝑡), . . . , 𝐶𝑀1,1(𝑡), . . . , 𝐶1,𝑁(𝑡), . . . , 𝐶𝑀𝑁,𝑁(𝑡) > 𝑤𝑖𝑡ℎ 𝐶𝑚,𝑖 ∈

ℝ 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑀 𝑎𝑛𝑑 1 ≤ 𝑛 ≤ 𝑁𝑖, values of variables in all 

neurons. The process of calculating 𝜏 may be represented as a 

finite sequence, 𝐴0 ⇒  𝐴1 ⇒  𝐴2 ⇒ . . . ⇒  𝐴𝑘  𝑤ℎ𝑒𝑟𝑒 𝑘 ∈  𝑁. 

The numerical neural-like P system 𝜏 halts, i.e., the ultimate 

configuration is attained, if it reaches 𝐴𝑘  where there is no 

function 𝑓𝑡,𝑖 or 𝑓𝑡,ⅈ
′  modify variables or values. 

B. Brain Tumor Segmentation 

The dataset 𝑌 = 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛 presents a binary 

classification situation, with 𝑛 being the number of samples in 

𝑌. Specifically,ℶ(𝑦),which translates {𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛} to 

the two established classes, is the goal function that will be 

learnt. The three most often used methods for automated 

classification are k-nearest neighbors, naïve Bayes, and 

support vector machines. 

With differing levels of convolutional and subsampling layers 

and various implementation modes, several deep networks, 

such as AlexNet, VGG-16, and ResNet, have recently made 

significant gains in MRI brain images segmentation. 

The convolution, pooling, activation, deconvolution, and loss 

operations that collectively make up a deep network often 

possess the following properties. 

The convolution operation is defined as follows: 

𝐵𝑗+1 = 𝛽𝑗+1  ×  𝑦𝑗 + 𝜑𝑗+1  (2) 

𝑦𝑗+1 = 𝑓(𝛽𝑗+1) , 0 ≤ 𝑗 ≤ 𝑛   (3)  

where𝑗(0 ≤ 𝑗 ≤ 𝑛) is the layer index, 𝑦𝑗 is the 𝑗th layer's 

output (𝑦0 is the input data), and 𝛽𝑗+1 and 𝜑𝑗+1 are the (𝑗+1)th 
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layer's weight and threshold, respectively. 𝑓 is an activation 

function that has several different forms, including the 

rectified linear unit (ReLu) function and sigmoid function. In 

order to reduce the spatial size of the maps of features, pooling 

layers are introduced in after the convolutional layers. Two 

prevalent approaches for sampling down features by figuring 

out their optimum and average values are max pooling and 

average pooling. 

Binary cross-entropy loss, that can be formulated as follows in 

Eq. (4), is always employed for determining a classification 

model's performance for a binary categorization issue. 

ℶ(𝑞, 𝑟, 𝑏) =  −
1

𝑛
 ∑ 𝑎[ln 𝑝 + (1 − 𝑎) ln(1 − 𝑝)]

𝑖
  (4) 

where 𝑞 represents the pixels of the images, 𝑟 denotes the 

labels, and 𝑝 is the prediction. 

IV. HYPERGRAPH-BASED NUMERICAL NEURAL-

LIKE P SYSTEMS (HNN P SYSTEM)  

A. Structures of HNN P System Neurons 

Conventional numerical neural-like P systems are limited by 

their two-dimensional simple graph structures, which allow 

information sharing between neurons limited to those that are 

connected. Their practical applications are hindered by their 

non-hierarchical structure and incapacity to store intermediate 

results temporarily. HNN P systems with hierarchical 

structures are needed to get around this restriction. 

Hypergraphs provide a way around this issue by letting P 

systems function in a higher-dimensional, more 

comprehensive nonlinear space, facilitating specific 

transmembrane communications and level-by-level operations 

while performing calculations in the plane. According to 

hypergraph theory, items with similar characteristics are 

members of the same set, whereas objects at different levels 

are members of supersets. More flexible hierarchical 

relationships for neurons are provided by these supersets than 

by conventional graphs or tree-based structures because they 

contain unique logical structures that can be utilized to 

organize complex relationships between objects. 

A matrix denoting the framework of the hypergraph 𝐺, as 

defined below, is given hypergraph 𝐺 = (𝑉, 𝐸, 𝑊).  

The hypergraph  

 
The hyperedge 𝑒 ∈ 𝐸 in 𝐻 can link any number of vertices 𝑣 ∈ 

𝑉. 

Below definitions outline the five distinct types of neurons 

that make up the HNN P system.  

1. An elementary neuron is defined as neuron 𝜗𝑖  (1 ≤ 𝑖 ≤ 𝑀) 

in the HNN P system if and only if 𝜎𝑖 is devoid of neurons.  

2. If neuron 𝜗𝑗  (1 ≤ 𝑗 ≤ 𝑀 , 𝑖 ≠ 𝑗) exists inside/outside of 𝜗𝑖, 

then 𝜗𝑖 is referred to as a parent/child neuron of 𝜗𝑗 in the 

HNN P system.  

3. The term hyper child neuron refers to neuron 𝜗𝑖  (1 ≤ 𝑖 ≤
𝑀)only if it has more than one parent neuron. Analogously, 

for two neurons 𝜗𝑖  and 𝜗𝑗 (1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑀), both 𝜗𝑖 and 𝜗𝑗 

are referred to as hyperparent neurons if and only if they 

share at least one child neuron. 

4. Neighboring neurons are those that, for any two child 

neurons 𝜗𝑖 and 𝜗𝑗  (1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑀), share a parent neuron 

if and only if that parent neuron. Neighbor neurons are 

another term for any two parent neurons.  

5. Input and output neurons are the neurons in the HNN P 

system that are responsible for variable input and output. 

  
Fig. 1. Example of a hypergraph (a) and it’s neuron structure (b) 

As an illustration, the HNN P system's basic neuron structure 

is depicted in Fig. 1. The hypergraph 𝐺, as depicted in Fig. 

1(a), comprises of V = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and E = {𝑒1, 𝑒2, 𝑒3}, 

where 𝑒1 = {𝑣1, 𝑣2}, 𝑒2 = {𝑣2, 𝑣3}, and 𝑒3 = {𝑣1, 𝑣2, 𝑣3, 

𝑣4}. The corresponding neuron structure is displayed in Fig. 

1(b). These are the elementary neurons 𝜗𝑣1
 , 𝜗𝑣2

, 𝜗𝑣3
. 𝜗𝑣1

 is 

descended from 𝜗𝑒1
 and 𝜗𝑒3

. 𝜗𝑣2
 possesses parent neurons 𝜗𝑒1

, 
𝜗𝑒2

 and 𝜗𝑒3
. 𝜗𝑣3

 is descended from 𝜗𝑒2
 and 𝜗𝑒3

. As a result, 

𝜗𝑣1
 , 𝜗𝑣2

, 𝜗𝑣3
 are hyperchild neurons. Three neurons are 

hyperparent: 𝜗𝑒1
, 𝜗𝑒2

 and 𝜗𝑒3
.Neighbor neurons include 

𝜗𝑣1
 , 𝜗𝑣2

, 𝜗𝑣3
, 𝜗𝑣4

. Neighboring neurons include 𝜗𝑒1
, 𝜗𝑒2

 and 

𝜗𝑒3
. 

B. Neuronal Transmission within the HNN P System.  

There are only two ways that neurons in the cell and neural 

like P system can communicate: either with one another or 

with their offspring. Within the HNN P system, connections 

between (hyper)child, (hyper)parent, or (hyper)parent and 

(hyper)child neurons can be made hierarchically. That is to 

say, the HNN P system offers three levels of communication, 

in contrast to the two-dimensional graph-based NN P system, 

where communication is limited to synapses between a single 

type of neuron. Networks between neurons that are 

(hyper)parents are one example. Amidst (hyper)child neurons 

is the other. From (hyper)parent to (hyper)child neurons, there 

is a third one. Thus, the following definitions apply to three 

new categories of rules. 𝑡𝑖 (𝑡𝑖 ≥ 1) indicates how many times a 

given variable, 𝜌𝑖, is controlled by rules in set R. The first 

square bracket indicates which rules in the second square 

bracket will cause the neurons to fire. Additionally, there are 

three scenarios in the second square bracket:  

(1) Rules operate on a single neuron, i.e. (6), (13). Variables 

𝜌𝑖(𝑡𝑖 − 1) evolve into 𝜌𝑖(𝑡𝑖) according to function 𝑃𝑖 . 

(2) In neurons belonging to the same class, rules operate 

between them. (7) and (14). The two neurons communicate 

with one another through the operations 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and 
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𝑏𝑎𝑐k𝑤𝑎𝑟𝑑. The variables 𝜌𝑖(𝑡𝑖 − 1) and 𝜌𝑗(𝑡𝑗 − 1)are 

transformed into 𝜌𝑖(𝑡𝑖) and 𝜌𝑗(𝑡𝑗) by the functions 𝑃𝑖  and 

𝑃𝑗.Exchange of products between 𝜗𝑣𝑖
 and 𝜗𝑣𝑗

 occurs 

simultaneously. Under (7), (14) there is an exception where 

one of the neurons has no variables; these are rules (8), (9) 

and (15), (16). 

(3) In distinct classes, rules operate between two neurons, i.e. 

(10). The two neurons communicate with one another 

through the operations 𝑢𝑝 and 𝑑𝑜𝑤𝑛. The variables 

𝜌𝑣(𝑡𝑣 − 1) and 𝜌𝑒(𝑡𝑒 − 1) are transformed into 𝜌𝑣(𝑡𝑣) and 

𝜌𝑒(𝑡𝑒) by the functions 𝑃𝑒 and 𝑃𝑣. Exchanges of products 

between ϑ_v and ϑ_e take place simultaneously. When one 

of the neurons in rule (10) has no variables, it is an 

exceptional case covered by rules (11) and (12). 

 

Fig. 2. HNN P system neuron architectures for medical 

segmentation 

Rules for (hyper)child neurons in detail (called V-rules). 

[𝜗𝑣𝑖
] : [ 𝜌𝑖(𝑡𝑖 − 1),𝑃𝑖) →𝜌𝑖(𝑡𝑖)]   (6) 

Function 𝑃𝑖 can be used to compute the variable 𝜌𝑖(𝑡𝑖 − 1) for 

(hyper)child neuron 𝜗𝑣𝑖
, resulting in 𝜌𝑖(𝑡𝑖). 

[𝜗𝑣𝑖
, 𝜗𝑣𝑗

]:[( 𝜌𝑖(𝑡𝑖 − 1), 𝑃𝑖  , 𝑓𝑜𝑟𝑤𝑎𝑟𝑑); (𝜌𝑗(𝑡𝑗),𝑖𝑛)] 

→ [(𝜌𝑗(𝑡𝑗 − 1), 𝑃𝑗, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑); (𝜌𝑖(𝑡𝑖),𝑖𝑛)] (7) 

When (hyper)child neurons 𝜗𝑣𝑖
 and 𝜗𝑣𝑗

 contain 

variables 𝜌𝑖(𝑡𝑖 − 1) and 𝜌𝑗(𝑡𝑗 − 1), functions 𝑃𝑖 and 𝑃𝑗 

transform them into 𝜌𝑖(𝑡𝑖) and 𝜌𝑗(𝑡𝑗). 𝜗𝑣𝑖
 and 𝜗𝑣𝑗

 

simultaneously exchange their products with each other by 

operations forward and backward. 

In specific, the V-rule will be framed as follows if 𝜗𝑣𝑖
 does not 

include variables and 𝜌𝑖(𝑡𝑖 − 1) is present. 

[𝜗𝑣𝑖
, 𝜗𝑣𝑗

]:[( 𝜌𝑖(𝑡𝑖 − 1),𝑃𝑖 , 𝑓𝑜𝑟𝑤𝑎𝑟𝑑); (𝜆,𝑖𝑛)]→ [(𝜆, 

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑); (𝜌𝑖(𝑡𝑖),𝑖𝑛)]   (8) 

where 𝜆 stands for "empty.". Without providing any input, 𝜗𝑣𝑖
 

trades its productions with 𝜗𝑣𝑗
. 

In the same way, we can derive the V-rule for the case where 

𝜗𝑣𝑖
 contains 𝜌𝑗(𝑡𝑗 − 1) and 𝜗𝑣𝑗

 contains nothing. 

[𝜗𝑣𝑖
, 𝜗𝑣𝑗

]:[(𝜆, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑); (𝜌𝑗(𝑡𝑗),𝑖𝑛)] → 

[(𝜌𝑗(𝑡𝑗 − 1), 𝑃𝑗 ,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑); (𝜆, 𝑖𝑛)] (9) 

Using nothing as input, 𝜗𝑣𝑗
 trades its productions with 𝜗𝑣𝑖

. 

H-rules: neuronal rules for (hyper)parent and (hyper)child. 

[𝜗𝑣, 𝜗𝑒 ]:[( 𝜌𝑣(𝑡𝑣 − 1) , 𝑃𝑣 , 𝑢𝑝); (𝜌𝑒(𝑡𝑒),𝑖𝑛)] → [(𝜌𝑒(𝑡𝑒 − 1), 

𝑃𝑒 ,𝑑𝑜𝑤𝑛); (𝜌𝑣(𝑡𝑣)𝑖𝑛)] (10) 

where the associated functions are 𝑃𝑒 and 𝑃𝑣, and the variables 

are 𝜌𝑣(𝑡𝑣 − 1) and 𝜌𝑒(𝑡𝑒 − 1) in neurons 𝜗𝑣 and 

𝜗𝑒 respectively. Brain neuron 𝜗𝑣 is the (hyper)child of neuron 

𝜗𝑒. 

When variables 𝜌𝑣(𝑡𝑣 − 1) and 𝜌𝑒(𝑡𝑒 − 1) are present in 

(hyper)child neuron 𝜗𝑣 and (hyper)parent neuron 𝜗𝑒, functions 

𝑃𝑒 and 𝑃𝑣 convert them into 𝛿𝑣(𝑡𝑣) and 𝛿𝑒(𝑡𝑒). After that, via 

operations 𝑢𝑝 and 𝑑𝑜𝑤𝑛, 𝜗𝑣 and 𝜗𝑒 exchange their products 

with one another simultaneously. 

Specifically, the H-rule will be formulated as follows if 𝜗𝑣 

contains 𝜌𝑣(𝑡𝑣 − 1) and 𝜌𝑒 does not include variables. 

[𝜗𝑣, 𝜗𝑒]:[( 𝜌𝑣(𝑡𝑣 − 1)) , 𝑃𝑣 , 𝑢𝑝); (𝜆, 𝑖𝑛)] → 

[(𝜆,𝑑𝑜𝑤𝑛); (𝜌𝑣(𝑡𝑣),𝑖𝑛)]    (11) 

Likewise, we can derive the H-rule for the case 

where 𝜗𝑣 is empty and 𝜗𝑒 is filled with 𝜌𝑒(𝑡𝑒 − 1). 

[𝜗𝑣, 𝜗𝑒]:[(𝜆, 𝑢𝑝); (𝜌𝑒(𝑡𝑒),𝑖𝑛)] → 

[(𝜌𝑒(𝑡𝑒 − 1), 𝑃𝑒 , 𝑑𝑜𝑤𝑛);(𝜆,𝑖𝑛)]   (12) 

Without providing any input, 𝜗𝑒 exchanges its products with 

𝜗𝑣. 

E rules are a set of guidelines for neurons that display 

hyperparent behavior. 

[𝜗𝑒𝑖
 ]:[ 𝜌𝑖(𝑡𝑖 − 1), 𝑃𝑖) → 𝜌𝑖(𝑡𝑖)]   (13) 

The variable 𝜌𝑖(𝑡𝑖 − 1) may be estimated for (hyper)parent 

neuron 𝜗𝑒𝑖
 by function 𝑃𝑖 , yielding 𝜌𝑖(𝑡𝑖). 

[𝜗𝑒𝑖
, 𝜗𝑒𝑗

 ]:[ 𝜌𝑖(𝑡𝑖 − 1), 𝑃𝑖 , 𝑓𝑜𝑟𝑤𝑎𝑟𝑑); (𝜌𝑗(𝑡𝑗),𝑖𝑛)] → 

[(𝜌𝑗(𝑡𝑗 − 1), 𝑃𝑗 , 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑); (𝜌𝑖(𝑡𝑖),𝑖𝑛)]   (14) 

Functions 𝑃𝑖 and 𝑃𝑗 convert variables 𝜌𝑖(𝑡𝑖 − 1) and 𝜌𝑗(𝑡𝑗 −

1) that are present in (hyper)parent neurons 𝜗𝑒𝑖
, and 𝜗𝑒𝑗

, into 

𝜌𝑖(𝑡𝑖) and 𝜌𝑗(𝑡𝑗). Exchange of the items between 𝜗𝑒𝑖
 and 𝜗𝑒𝑗

is 

accomplished by operations forward and backward. 
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Analogously, we may derive the E-rule in the case when 𝜗𝑒𝑖
 

contains 𝜌𝑖(𝑡𝑖 − 1) and 𝜗𝑒𝑗
 contains nothing. 

[𝜗𝑒𝑖
, 𝜗𝑒𝑗

]:[( 𝜌𝑖(𝑡𝑖 − 1), 𝑃𝑖 , 𝑓𝑜𝑟𝑤𝑎𝑟𝑑); (𝜆, 𝑖𝑛)] →  

[(𝜆, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑); (𝜌𝑖(𝑡𝑖),𝑖𝑛)]    (15) 

where 𝜆 stands for "empty.". Without providing any input, 𝜗𝑒𝑖
 

trades its productions with 𝜗𝑒𝑗
. 

Analogously, we may derive the E-rule in the case when 𝜗𝑒𝑗
 

contains 𝜌𝑗(𝑡𝑗 − 1) and 𝜗𝑒𝑖
 contains nothing. 

[𝜗𝑒𝑖
, 𝜗𝑒𝑗

]: [(𝜆, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑); (𝜌𝑗(𝑡𝑗),𝑖𝑛)] → 

[(𝜌𝑗(𝑡𝑗 − 1), 𝑃𝑗, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑); (𝜆, 𝑖𝑛)] (16) 

Furthermore, under the V- and E-rules, if 𝑖 = 𝑗, the outcomes 

of variable 𝜌𝑖 will be redefined in the neuron 𝜗𝑣𝑖
or 𝜗𝑒𝑖

, 

bringing about a change in variable 𝜌𝑖. 

C. Configurations for the HNN P Systems 

The HNN P system 𝜏 with 𝑀 > 1 neurons may thus be 

defined. 

𝜏 = 𝜗1, 𝜗2, … , 𝜗𝑛 , 𝑅, 𝑠𝑦𝑛𝑎𝑝𝑠𝑒, 𝑖𝑛𝑝𝑢𝑡𝑁, 𝑜𝑢𝑡𝑝𝑢𝑡𝑁  (17) 

where p neurons in HNN P system 𝜏 are represented by 

𝜗1, 𝜗2, … The form of each neuron 𝜗𝑖 (where 1≤ i ≤ 𝑀) is 𝜗𝑖 = 

(𝜌𝑖, 𝑃𝑖), where 𝛿𝑖 denotes the set of variables and 𝑃𝑖  represents 

the operations in neuron 𝜗𝑖. The starting value of 𝜗𝑖 is 𝜌𝑖(0). R 

refers to the three distinct types of rules in 𝜏 -V-, H-, and E-

rules that let neurons exchange information with one another 

and with (hyper)child, (hyper)parent, and (hyper)child 

neurons. The neurons of 𝜏 can be identified by 𝑠𝑦𝑛𝑎𝑝𝑠𝑒. The 

input and output neurons are presented by 𝑖𝑛𝑝𝑢𝑡𝑁, 𝑜𝑢𝑡𝑝𝑢𝑡𝑁 

⊆ {1,2, …, M}, respectively. 

V. HNN P SYSTEM TAILORED FOR MRI BRAIN 

IMAGE SEGMENTATION 

One of the primary objectives of this study is to create an 

HNN P system tailored for MRI brain image segmentation. 

Drawing inspiration from the commonly utilized down- and 

up-sampling architecture found in deep learning models, we 

have devised the neuron structure for our HNN P system 

(depicted in Figure 3), consisting of nine hyperchild neurons 

(namely, 𝜗𝑣1
 −  𝜗𝑣9

)and five hyperparent neurons (𝜗𝑒1
 −

 𝜗𝑒5
). This configuration is specifically designed to facilitate 

MRI brain image segmentation tasks, where the goal is to 

identify and delineate features of tumors or organs present in 

MRI brain images. To achieve this, we have introduced three 

distinct types of new rules within the HNN P system, enabling 

the selection of relevant tumor features from the image data. 

A. Initialization  

To makes sure the achievement of precise segmentation of 

tumor, the HNN P system is tasked with both learning 

distinctive features and categorizing each pixel within a given 

image slice. To accomplish this, we represent the initial 

 

 

 

Fig. 3. In the hyperparent neurons 𝜗2 𝑎𝑛𝑑 𝜗3, which make up 

the partial neuron framework of the multilevel fusion attention 

mechanism, their objective is to incorporate the up-down 

features from adjacent neurons in 𝜗2 𝑎𝑛𝑑 𝜗3 with the forward-

backward features from neurons in 𝜗2 𝑎𝑛𝑑 𝜗3 , along with 

their corresponding counterparts in 𝜗8 𝑎𝑛𝑑 𝜗9. 

values of the variable δ as a 2-dimensional vector, 

encompassing the pixels of a slice along with their associated 

labels, denoted as ρ (𝐶11, 𝐶12,… , 𝐶1ℎ; …, 𝐶𝑖1, 𝐶𝑖2, … , 𝐶𝑖ℎ; … 

, 𝐶𝑔1, 𝐶𝑔2, … , 𝐶𝑔ℎ) .Initially, the pixels from the images and 

the computational parameters are assigned to variable 𝛿𝑣1 (0) 

within the input neuron𝜗𝑣1
, while the label values are assigned 

to 𝛿𝑒5 (0) within neuron 𝜗𝑒5
.Once all images and labels are 

initialized in this manner, the HNN P system commences its 

segmentation process 

B. Working Mechanism  

The neurons responsible for the downsampling and 

upsampling paths are divided into two groups: 𝜗𝑣1
 −  𝜗𝑣5

 and 

𝜗𝑣6
 −  𝜗𝑣9

.Images are initialized within neuron 𝜗𝑣1
 . 

Subsequently, neurons 𝜗𝑣1
 −  𝜗𝑣5

 and𝜗𝑣6
 −  𝜗𝑣9

perform the 
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downsampling and upsampling operations, respectively, 

utilizing V-rules inspired by the UNet model.  

To enhance both the boundary and content features of tumors, 

we have devised a multilevel fusion attention mechanism 

(illustrated in Figure 4) within the hyperparent neurons, 

specifically 𝜗𝑒1
 −  𝜗𝑒4

. This mechanism combines the up-

down features from adjacent neurons in 𝜗𝑣1
 −  𝜗𝑣5

and the 

forward-backward features of neurons in 𝜗𝑣1
 −  𝜗𝑣5

with their 

corresponding neurons 𝜗𝑣6
 −  𝜗𝑣9

 using a combination of V-

rules and H-rules. 

C. Termination and Output  

 Upon the completion of calculations by all neurons, 

including: 𝜗𝑣1
 −  𝜗𝑣9

and 𝜗𝑒1
 −  𝜗𝑒5

, a spike denoted as α is 

generated. The HNN P system undergoes iterative updates 

until a predefined number of α spikes is reached. Once the 

HNN P system concludes its operation, the values of variables 

within neuron 𝜗0 are regarded as the ultimate results extracted 

from the HNN P system. 

VI. EXPERIMENT AND DISCUSSIONS 

A. Dataset 

"The Multimodal Brain Tumour Image Segmentation 

Benchmark" is referred to as BRATS. Evaluating objectively 

the performance of various state-of-the-art brain tumour image 

segmentation techniques is a challenging task. Furthermore, 

the implementation of a commonly recognized benchmark for 

automatic brain tumour segmentation the BRATS benchmark 

has made it possible to compare different glioma segmentation 

techniques objectively using this shared dataset. 3064 T1-

weighted, contrast-enhanced images of three different types of 

brain tumors—meningioma (708 slices), glioma (1426 slices), 

and pituitary tumor (930 slices)—from 233 patients make up 

this brain tumor dataset. 

B. Evaluation Metrics 

    Dice Coefficient 

A measure of similarity between two sets of data, typically 

sets of pixels, is called the dice coefficient. Typically, it is 

employed in image processing and machine learning 

applications to ascertain the degree of correspondence 

between two images or data sets. 

Dice coefficient = 2 | 𝑈 ∩ 𝑉 | / (|𝑈 | + | 𝑉 |) (18) 

 where U and V are the two sets of data being compared and 

|U| and |V| represent the count of elements in each set. This 

definition of the dice coefficient is the ratio of the intersection 

of two sets of data to their union. 

Precision 

An assessment metric called precision counts the frequency of 

positive predictions the model made that came true. It is 

computed by dividing the total number of false positives and 

true positives by the frequency of true positives. 

Precision = TP / (FP + TP)    (19) 

Where, TP is True Positive, FP is False Positive 

Recall 

The evaluation metric known as recall quantifies the 

proportion of positive class samples in the dataset that the 

model correctly identified. True positives are divided by the 

total of false negatives and true positives to arrive at this 

calculation. To calculate recall, use the following formula: 

Recall = TP / (FN + TP)   (20) 

Where, TP is True Positive, FP is False Positive, FN is False 

Negative 

F1 Score 

A model's precision and recall scores are combined to create 

the F1 score, an assessment metric. The precision of a model 

is the percentage of positive predictions that came true. The 

frequency of positive class samples in the dataset that the 

model correctly identified is measured by recall. An F1 score 

reaches its best value at 1 and worst score at 0, and it can be 

understood as a harmonic mean of the precision and recall. 

Recall and precision both contribute equally to the F1 score. 

The F1 score can be calculated as follows: 

F1 = 2 ∗ Precision + Recall / (Precision ∗ Recall) (21) 

C. Comparisons with Cutting Edge Techniques for the 

Segmentation of Multiple Brain Metastases 

Next, as briefly described below, we analyze the HNN P 

system with four cutting-edge techniques that P systems have 

applied on the BRATS datasets. 

Mask R-CNN for semantic segmentation and classification. 

The batch size, iteration stages, and initial learning rate are 

16,400 and 0.002. 

Table 1 shows the Dice Coefficient, Loss, Learning Rate, 

Validation Dice Coefficient, Validation Loss of five 

techniques applied to BRATS dataset. The approaches that are 

effective are highlighted in bold. 
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Fig. 4. Outcomes of the segmentation of multiple brain metastases for 

cases 1 and 2. The raw MRI is displayed in the first column, the 

manual segmentation is presented in the second column, and the 

HNN P system prediction is presented in the final column. 

 

Fig. 5. A quantitative assessment of the performance parameters for 

each approach is provided by comparing the Dice Coefficient scores 

obtained from various techniques. 

VII. CONCLUSION 

In this paper, we have introduced a novel approach called the 

hypergraph-based numerical HNN P system, which 

incorporates various types of neurons to capture the complex 

relationships within neuron structures. This system is 

specifically designed to address the challenges of Brain tumor 

segmentation in MRI brain images. By defining 

communication rules for different types of neurons and 

leveraging a multilevel fusion attention mechanism, we have 

developed a segmentation model that enhances both boundary 

and content features of tumors. Our experiments on Brain 

Tumor dataset have demonstrated that the HNN P system 

outperforms existing algorithms by achieving Recall upto 

82%. 

Fig. 6. A quantitative assessment of the performance parameters for 

each approach is provided by comparing the Loss scores obtained 

from various techniques. 
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